High Frequency Homogenization of Laser Illumination Through Stationary 0.22 N.A. Multimode Optical Fiber.

Fergal Shevlin, Ph.D. DYOPTYKA, Ireland.

Laser Display and Lighting Conference 2023 Yokohama, Japan.

2023-04-21



Randomly-distributed surface deformations.



Randomly-distributed surface deformations.

Interferometer fringes showing deformations.



Randomly-distributed surface deformations.

Interferometer fringes showing deformations.

Randomized divergence with small angular extent.



Randomly-distributed surface deformations.

Interferometer fringes showing deformations.

Randomized divergence with small angular extent.

Typical specification: frequency  $\geq$  1 MHz; area 3 mm×4.5 mm; reflectance  $\geq$  96%; damage  $\geq$  1 W mm<sup>-2</sup>.

### Fiber-coupled apparatus



# Circular core exit face, $\emptyset$ 500 µm, 0.39 N.A.



DM inactive,  $C_S = 58.9\%$ .

### Circular core exit face, $\emptyset$ 500 $\mu$ m, 0.39 N.A.



DM inactive,  $C_S = 58.9\%$ .

DM active,  $C_S = 5.3\%$ .

# Square core exit face, $\Box 150\,\mu m,\, 0.39$ N.A.



DM inactive,  $C_S = 47.5\%$ .

#### Square core exit face, $\Box 150 \,\mu m$ , 0.39 N.A.



DM inactive,  $C_S = 47.5\%$ .

DM active,  $C_S = 3.6\%$ .

For smaller fiber exit face as an extended source of coherent illumination.
For improved directionality of emission from fiber exit face.
For compactness of DM-fiber coupling optical system

■ For smaller fiber exit face as an extended source of coherent illumination.

For improved directionality of emission from fiber exit face.

For compactness of DM-fiber coupling optical system.

For smaller fiber exit face as an extended source of coherent illumination.
For improved directionality of emission from fiber exit face.

For compactness of DM-fiber coupling optical system.

- For smaller fiber exit face as an extended source of coherent illumination.
- For improved directionality of emission from fiber exit face.
- For compactness of DM-fiber coupling optical system.

#### Core $\emptyset$ 550 $\mu$ m, 0.22 N.A.



[Left] DM inactive,  $C_S = 77\%$ . [Center] DM active,  $C_S = 5.2\%$ . [Right] Larger region, average of nine images acquired with DM active,  $C_S = 3.6\%$ .

### Core $\emptyset$ 200 $\mu$ m, 0.22 N.A.



[Left] DM inactive,  $C_S = 63\%$ . [Center] DM active,  $C_S = 5.5\%$ . [Right] Larger region, average of nine images acquired with DM active,  $C_S = 3.8\%$ .

### Core $\emptyset 105 \,\mu\text{m}$ , 0.22 N.A.



[Left] DM inactive,  $C_S = 74\%$ . [Center] DM active,  $C_S = 7.1\%$ . [Right] Larger region, average of nine images acquired with DM active,  $C_S = 6.9\%$ .

### Core $\emptyset$ 50 $\mu$ m, 0.22 N.A.



[Left] DM inactive,  $C_S = 59\%$ . [Center] DM active,  $C_S = 9.7\%$ . [Right] Larger region, average of nine images acquired with DM active,  $C_S = 7.8\%$ .

#### Conclusions

- Good performance demonstrated in 0.22 N.A. stationary multimode fiber.
- Optical efficiency of > 95% confirmed.
- Excellent temporal stability confirmed.

#### Good performance demonstrated in 0.22 N.A. stationary multimode fiber.

• Optical efficiency of > 95% confirmed.

Excellent temporal stability confirmed.

Good performance demonstrated in 0.22 N.A. stationary multimode fiber.
Optical efficiency of > 95% confirmed.

- Good performance demonstrated in 0.22 N.A. stationary multimode fiber.
- Optical efficiency of > 95% confirmed.
- Excellent temporal stability confirmed.

Please contact me to discuss:

fshevlin@dyoptyka.com